

CERTIFICATE

Material Fire Test Certificate

IGNL-9319-05-02C IO1 R00

DATE OF TEST 05.09.2025
ISSUE DATE 16.10.2025
EXPIRY DATE 15.10.2030

AS ISO 9239.1-2003 Determination of the burning behaviour using a radiant heat source

SPONSOR

Belgotex Floorcoverings (Australia) Pty Ltd

Building 3, Warehouse 8, 161 Manchester Road Auburn, NSW 2144

TEST BODY

Ignis Labs Pty Ltd
ABN 36 620 256 617
3 Cooper Place
Queanbeyan NSW 2620
Australia
www.ignislabs.com.au
(02) 6111 2909
Test body is the test location

NATA Accredited Laboratory Number: 20534 Site number: 24604 Accredited for compliance with ISO/IEC 17025 - Testing

NATA

Specimen Name

Bjelin XL/XXL

Specimen Description

The sponsor described the specimen as hardened timber flooring. It is composed of an ultra HDF core and has a nominal thickness of 11 mm. The sponsor described its colour as 'hard smoked' (dark brown) and has an end use in residential and commercial applications. The exposed face has a veneer wood layer with a lacquered surface.

The specimen was received as hardened timber flooring with a fibreboard core and was tested on Belgotex Aqua Elite underlay. The flooring was

The specimen was received as hardened timber flooring with a fibreboard core and was tested on Belgotex Aqua Elite underlay. The flooring was dark brown in colour and had an average measured thickness of 11.31 mm. The underlay was blue in colour and had an average measured thickness of 2.20 mm with an adhesive strip along one edge of the roll measuring approximately 20 mm wide and covered with a paper backing. Where the underlay used had the adhesive strip, the protective paper was left in place. The specimens had an average measured total thickness of 13.49 mm and was tested on a 7.5 mm fibre cement substrate.

Ignis Labs was not responsible for the sampling stage. All specimens were sampled and fabricated by the test sponsor. The test results apply to the specimens as received.

Test Method

Four (4) specimens were tested in accordance with Australia Standard 9239.1-2003 Reaction to fire tests for floorings, Part 1: Determination of the burning behaviour using a radiant heat source carried out in accordance with EN ISO 9239-1. Specimen 1 was tested with the product direction, and specimens 2 to 4 were tested against the product direction. As per the request of the sponsor, the specimens were tested until extinguishment.

Observations

Comparing the critical heat flux values of specimens tested in two directions, the specimen tested against the production direction yield the worst result and as such an additional two tests were completed and detailed below. The tested specimen exhibited similar results. Smoke and melting were observed prior to ignition, and ignition occurred at 148, 162, 148, and 151 seconds into the test for specimens 1 to 4 respectively. Flameout occurred at 1494, 1432, 1389, and 720 seconds. Afte the test, the specimens were charred black and cracked where flaming had occurred. Charring was also observed up to 350 mm from the zero point. After the test, all burnt sections were heavily charred and cracked.

Calculations

	Specimen				
Parameters	Unit	With the production Against production direction direction			ction
Specimen number		1	2	3	4
Test duration	min	30.00	30.00	30.00	30.00
Time to reach 50mm	S	295	272	284	299
Flameout time	min	24.9	23.87	23.15	12.0
Flame spread at 10 min	mm	210	190	190	190
Flame spread at 20 min	mm	310	360	310	190
Flame spread at 30 min	mm	310	360	310	190
Flame spread at flameout	mm	310	360	310	190
Maximum light attenuation	%	21.73	27.97	30.49	24.87
HF-10	kW/m²	9.27	9.65	9.65	9.65
HF-20	kW/m²	7.23	6.19	7.23	9.65
HF-30	kW/m²	7.23	6.19	7.23	9.65
CHF	kW/m²	7.23	6.19	7.23	9.65
Critical heat flux	kW/m²	7.2	6.2	7.2	9.6
Smoke obscuration integration	%×min	33.42	50.81	37.08	33.04

Result

Parameters	Unit	Results
Average flame spread	mm	286.67
Average critical heat flux	kW/m²	7.6
Average smoke obscuration integration	%×min	40.31

Test Supervisor

Darren Laker

Joseph Lind

Technical Lead
Jessica Ying

Version: IGNI -OF-046-Issue 02 Revision 01

Disclaimer These test results relate only to the behaviour of the test specimens of the material under the particular conditions of the test, and they are not intended to be the sole criterion for assessing the potential fire hazard of the material in use. The results of these fire tests may be used to directly assess fire hazard, but it should be recognized that a single test method will not provide a full assessment of fire hazard under all fire conditions.

The information contained in this document is provided for the sole use of the recipient and no reliance should be placed on the information by any other person. In the event that the information is disclosed or furnished to any other person, the Ignis Labs Pty Ltd accepts no liability for any loss or damage incurred by that person whatsoever as a result of using the information.

disclosed or furnished to any other person, the Ignis Labs Pty Ltd accepts no liability for any loss or damage incurred by that person whatsoever as a result of using the information.

Copyright © All rights reserved. No part of the content of this document may be reproduced, published, transmitted or adapted in any form or by any means without the written permission of the Ignis Labs Pty Ltd.